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A G E O M E T R I C A L  M O D E L  OF T H E  D E F E C T  S T R U C T U R E  

OF A N  E L A S T O P L A S T I C  C O N T I N U O U S  M E D I U M  

V. P. Myasnikov and M. A. Gusev UDC 539.37+514.7 

We consider a new class of elastoplastic models which are based on the assumption that 
internal interaction between the continuum particles has affine-metric geometrical structure. 
From the physical viewpoint, the affine-metric objects are intrinsic thermodynamic variables 
which describe the evolution of various defect ,structures in a deformable material and also 
interaction between themselves and with the field of reversible strains. The analysis performed 
allows one to establish a relation between the classical mechanical characteristics of elastoplastic 
materials and the field of dislocation density and other types of defects. 

I n t r o d u c t i o n .  It is shown that the mechanical model of the classical theory of elasticity contains latent 
thermodynamic parameters which characterize the geometrical structure of internal interactions between 
the particles. In the classical theory, these parameters vanish, which is attributed to the hypothesis that 
the intrinsic geometry of a material coincides with the geometry of the observer's Euclidean space. If this 
hypothesis is rejected, the latent parameters become nonzero and admit a natural interpretation as geometrical 
objects of affine-metric spaces. The use of affine-metric objects to describe internal interactions between the 
continuum particles allows one to extend the classical theory to the broad class of elastoplastic mechanical 
behavior of models of materials and relate these objects to the characteristics of the defect structure of 
the continuum. The interaction between the defects and the field of reversible elastic strains is determined 
by the character of dissipative processes in the continuum according to the principles of nonequilibrium 
thermodynamics. 

1. Elastic C o n t i n u o u s  M e d i u m  wi th  Defects .  The experimental investigations show that the test 
specimens that have not been treated preliminarily possess internal stresses, which affect the behavior of 
the structures under external loads. The initial stresses can be reduced by various technological techniques 
(for example, by annealing). For hardening, the useful properties of internal stresses (cold-work hardening, 
quenching, etc.) can also be used. From the physical viewpoint, the internal stresses are due to various defect 
structures in the material: dislocations, disclinations, and point defects. Although the problem of occurrence 
and existence of internal stresses has been known for a long time, there is no consistent theory for modeling 
the properties of real elastic materials. The main difficulty is the necessity to take into account the interaction 
between all defect structures and reversible elastic strains in the material. 

The idea of an approach to solution of this problem arises from analysis of the classical elastic- 
continuum model. It is known [1, 2] that the general equations of motion for an elastic body are written 
in the form 

Op 
0-7+ 

Opvk dvi 0o" i ds 0 I$ OT 
Oxk - 0 '  p--~ = OzJ + pfi' pT-~  = Oxi ~ ~xi ] ' 

OU J (~ik - 2eik)p OU v=v(s, ij), (1.1) 
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~t  = d---t + ~ik-5-~zJ + ~Jk-h;-:~ = ei~ = -{ \ Oxi + O x ' ]  " 

Here U = U(s,eij) is the internal energy, s is the entropy, cij is the elastic strain tensor characterizing 
the internal geometrical structure of the material, a i are the components of the stress tensor, f/ are the 
components of the acceleration of the external mass forces, and p is the density. In the classical theory of 
elasticity, the elastic strain tensor e 0' coincides with the complete strain tensor Aii  (the Almansi tensor). 
In the observer's system of reference connected with three-dimensional Euclidean space, the complete strain 
tensor Aij [1, 2] is determined via the Lagrangian characteristics ~k = ~/~(x, t) of the continuum particles 
from the relation 

For the Almansi tensor, the representation (1.2) in terms of the vector field ~k(x,t) is always valid and it 
does not depend on the physical mechanism of the deformation process; here Aii  characterizes the shape of 
the deformable specimen. 

The elastic strain tensor eq determines the intrinsic metric tensor 

gij = 6ij - 2~ij. (1.3) 

The transfer equation for this tensor 

~Dgo _ dgii Ov I Ov t 
~Dt - dt + g"-hgT~J + gJt-5F = 0 (1.4) 

follows from (1.1) and (1.3). If Aij  = eij, the solution of this equation is represented in the form 

gij = Ox i OxJ" (1.5) 

However, it is known [1, 2] that the validity of relation (1.5) results from the vanishing of the Riemann R[jq, 

twisting CA, and nonmetricity Is[kit tensors: 

R!jq ---- Oxq Oxi + FaqFi / -  FaiFiq = 0; (1.6) 

1 /, 
c A --- : ( r i ;  - = 0; (1.7) 

Ogo r s F s Kki j  = Vkgij  -- Ox k ikgsj -- jkgsi = 0. (1.8) 

Since the coupling coefficients Fkj are symmetric relative to the lower indices and match the metrics [conditions 
(1.7) and (1.8), respectively], they are expressed in terms of the components of the metric tensor by the 
Christoffel formulas [1-3]: 

r , ; . = l   sr0 . . o g s ,  . , 
5 g L Ox i + Ox-----; OzsJ g'Sgsj = 6~. (1.9) 

The tensors R~jq, CA. , and Kijk (see, e.g., [4]) characterize the non-Euclidean properties of a variety 
for which they are calculated. These tensors vanish in the classical continuum model [conditions (1.6)-(1.8)]. 
This means that the simplest geometrical model (the Euclidean model) is used to describe the intrinsic elastic 
properties of the material. The condition that the Euclidean properties of the intrinsic geometry of elastic 
continuum do not change during motion can be formulated in differential form. Combining (1.4) and (1.6)- 
(1.9), we obtain the transfer equation along the trajectories for the Riemann, twisting, and metricity tensors 
in the form 

~)Rljq d OvP-1 OvP-I  OvP- t  _ Ov t -n  
= -~R~q + -gF~'piq + -g~j&pq + g~q&ip O~p~j~ = O, ~Dt 
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~DC~ OvJ-k Ovt -k  Ovk Z = dc~ + -~xiUtj + -~xjC~i- -~jCij = O, (1.10) 

D Kkij d . K "" OrS OrS - OvS 
9 t  = ~ I<k~j + , ,  Ox k + -~--~z~Kksi + Kkis-ff~xi = O. 

Since these equations are linear, the zero initial conditions give a zero solution at any moment of time. 
From the geometrical viewpoint, this result means that the elastic-continuum model is closed. Strains that 
occur during the motion of elastic continuum can be considered as a one-parameter mapping family which do 
not alter the intrinsic Euclidean structure of the material. Moreover, the coupling r/}j is nonzero. Using (1.4) 
and (1.9), we obtain 

9r i d j + - k  Or" -k Or" Ov k 02v k 
~D---~ . . . .  .~ ris-ff~x j +Fs/b'x~ - ri3oxS - OziOxj. (1.11) 

The nonzero source on the right-hand side of (1.11) gives a nonzero solution even for the zero initial condition 
for Fkj. The mechanical meaning of this change in Fi~. is at tr ibuted to the transformation of the coordinate 
system which is "frozen" into the medium from the Cartesian system at the initial moment of time to a 
curvilinear system during deformation. 

It should be noted that the Riemann R~jq, twisting C~, and nonmetricity Kkij tensors are the "latent" 
parameters in the theory of elasticity. Equations (1.10) have nontrivial solutions for the nonzero initial 

1 k condition. Therefore, the functions Rijq, C~j, and Kkii should be treated as the determining parameters 
of the theory of elasticity. This enhancement of the Euclidean structure of the classical theory of elasticity 
corresponds to a transition to the geometry of affine-metric spaces [4, 5]. The defect structures, such as 
disclinations, dislocations, and point defects, can be taken into account by using the tensors R~iq, C~, and 

h'kij [6, 7]. The internal energy of the material with these defects is of the form U = U(s, eij, R~jq, C~, Kijk). 
Using the same assumption that dissipation is ignored in Eqs. (1.1), one can obtain the following equations 
of state for these materials using the formalism of nonequilibrium thermodynamics [8]: 

J 5ri = (Sik 2eik)P~k j [ OU c j  q OU ~k~ OU . OU 

/ OU R{ OU Rkip q _ 2  0U -k \ +el  oR#, (i.12) 

From (1.12) and (1.1), it follows that, if various types of defects are taken into account, the stress-tensor 
components contain additional terms which have the meaning of internal stresses which depend on the defect 
structure of the material. The state of equilibrium of the material is described by the equations 

0a{ I 
= o,  Inj[ov = o. (1.13) OxJ 

For a distribution of defects (the tensors R~jq, C~, and h'kij) specified at the initial moment of time, the elastic 
strain tensor ~ij is determined from (1.12) and (1.13) with a certain arbitrariness. The fact that the functions 
R~jq, C~, and Kijk are nonzero, i.e., the transition to the aiTine-metric model of the intrinsic geometrical 
structure of the material, means that a representation for the tensor eij cannot he constructed in terms of 
the displacement vector u = ~ - t~(x, t). As mentioned above, for the Almansi tensor Aij, the representation 
(1.2) always exists. We assume the following relation between the tensors Aij and ~{j: 

Aij -- ~0" + ~'ij. (1.14) 

Here ~ij is a tensor that characterizes the irreversible deformation of the material. For the classical elastic- 
continuum model, we have ~{j -- 0. Since for the state of equilibrium, the Lagrangia~ characteristics can be 
found from the condition Aij = 0, then eij = -~ i j .  Thus, the plastic strain, together with defects, allows the 
specimen to preserve its shape in the state of equilibrium. The occurrence of ~'ij and the defects is due to 
the manufacturing of a specimen of specified shape. Obviously, this process is not unique and each of similar 
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processes will result in a specific set of the fields of eij, R[jq, C~, and Kijk ,  which are fit by the equilibrium 
conditions (1.13) with stress tensor (1.12). 

2. Aff ine-Metr ic  Model  of Elas toplas t ic  Mater ials .  The use of the affine-metric space geometry 
is natural when the intrinsic geometrical structure of the elastic continuum model is enhanced to describe 
the occurrence of defect structures. The total number of independent functions is 33: six components of the 
metric tensor gij and 27 coefficients of the affine coupling *F/k/. Generally, in contrast to the metric coupling 
*['ijk calculated by the Christoffel formulas (1.9), the affine coupling Fikj is not symmetric relative to the lower 
indices. Moreover, since the functions *F/k i are independent of the metric tensor gij, the affine coupling does 
not agree with the metric: 

Ogij . q , q . 
*I(kii ---- *Vkgii  = Ox k Fikgqj - Fjkgqt ~ O. (2.1) 

We show that the metric coupling enters into the affine metric additively. Cyclic permutation of the indices 
in (2.1) yields 

Ogki 091k 
*VJgki = OxJ *Fkj,i -- *Fij,k, *Vigjk = Ox i *Fji,k -- *rki,j, (2.2) 

where *Fij,t = *r~gsk. Subtracting (2.1) from both relations in (2.2), we obtain 

2Sij,k = 2Fij,k + *Fik,j - *Fki,j + *Fjt,i - *Fkj,i - ( *Fij,k + *Fji, k); (2.3) 

1 
SiLk = "~( *Vjgki + * V i g j k -  *Vkgo).  (2.4) 

The object Sij,k is called a segmentary-curvature tensor [5] (a coupling-defect tensor according to the 
terminology of [4]). The functions rij,k are determined from (1.9): 

rij,k = ri~gsk. (2.5) 
The antisymmetric part of the coupling determines the covariant components of the twisting tensor 

1 . 
*Cij, k = ~( r i j , k -  *Fji,k), 'C,~ = *Cij,sgsk. (2.6) 

From (2.3) and (2.6), we obtain a representation for *Fij,k in the form [4, 5] 

*Fij,k = Fij,k -- Sij,k + *Cik,j "1- *Cjk,i "]- *Cij,k. (2.7) 

Formula (2.7) shows that an arbitrary affine coupling can be resolved into metric and nonmetric components. 
For the affine-metric characteristics, the transfer equations can be obtained by a minimum modification 

of the corresponding transfer equations for the Euclidean model of elastic continuum, i.e., by introducing 
additional sources for the metric tensor and the coupling objects into (1.4) and (1.11): 

~)gij dgij Ov k Ov k 
~Dt = dt + g ik~xj  + gJk~xi = 2Eij; (2.8) 

, k d . - k  OrS . - k  OvS Ovk 02vk 
r , j  + + = - - -  (2 .9 )  

7)t  = - -  " r si-5-~zi ri~'~Txi Ozs OziOz~ 

The structure of the sources Eij and E/~ depends on the character of the dissipative processes during 
deformation. Since 

~DAij 1 (Ovi  Ovj)  (2.10) 
~9t = 2 \ Oz~ + Ox i j ' 

relations (1.14) and (2.10) imply that ff)~rij/~Dt = E i j .  The source Eij characterizes the processes of plastic 
deformation in the material. 

The solutions of the kinematic equations (2.8) and (2.9) with known functions E~j and E~- give the 
metric tensor and the coupling coefficients. Within the framework of the geometrical approach, the complete 
set of coupling components is determined by relation (2.7). Do the solutions of Eqs. (2.8) and (2.9) give this 
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:omplete set? The answer is positive, and it is formulated as follows: relations (2.7) are the integrals of Eqs. 
(2.8) and (2.9) for arbitrary Eij  and E~-. 

To prove this statement, we write the transfer equation for the functions appearing on the left-hand 
�9 nd right-hand sides of (2.7). The equation for the affine coupling *Fij,k follows from (2.8) and (2.9) and has 
the form 

D*Fij,k d �9 OvS , -  OrS Ors �9 I l 02vl  
~Dt - d--t*FiLk + F~Lk~x/+ Fis'k~xJ + *Fij'SOxk = 2 FiiEl~ - Eijgzk OxiOzfylk. (2.11) 

The covariant components of the metric coupling Fij,k are calculated by (2.5). Hence and from (1.11) 
3he obtains the transfer equation 

i[DFij,k 02v I OEki OEkj OEij (2.12) 
[Dt = Dij'k OxiOxJ "glk' D i j , k -  OxJ + Ox i Ox k" 

We consider the covariant derivatives (2.1) in the coupling-defect tensor (2.4). In accordance with (2.8), 
the function Ogij/Ox k satisfies the equation 

~D Ogij 2 0Ei j  02v s 02v s 
~)t Ox I - ~ - gls oxlOxJ gJs'OxtOxi" (2.13) 

Combining (2.13) with the transfer equations (2.11), we obtain the evolution equation for *Kkij: 

~) *Kki j d *K "" Ovs c3vS OrS 
~Dt = d-t *Kkij + s,~ Ox"---- s + *Kksj ~ x  i + *Kki~ OxJ 

_ 2 0 E i j  �9 t �9 I t t 
Ox k 2 FikElj  - -  2 FjkEli + Eikglj + E~kgli. (2.14) 

Using the definition of the covariant derivative [3] for a tensor of rank two, we write the right-hand side of 
(2.14) in the covariant form 

~) *Kkij  l l 
2)t = 2 * V k E q  + Eikgt j + E~kgti. (2.15) 

Inasmuch as the operator ff)FDt "preserves the tensorial nature of the quantities, it follows from (2.15) that 
the sources E~. are the tensor objects. 

From (2.4) and (2.15), one obtains the following equation for the coupling-defect tensor SiLk: 

1 t 1 t 1 t 
~DSij,kIDt - * V i Z j k  + *V jE ik  - * V k E q  + 5 ( Z i j  + Z}i)g,k - 5 (Z ik  - E~i)gt j - 5(E~k - Etkj)gti . 

Passing from covariant to classical derivatives and the coupling coefficients, we obtain 

IDSij,k OEki OEkl OEij �9 t �9 t �9 t 2 .C!kEtj  
~Dt " = OzJ + Ox i Oz k ( Fij + rii)Ezk + 2 C~kEti + 

I t t I t 1 t 
+ ~ ( E i  I + E~i)gtk - ~(Eik - Etki)gtj - ~(E~k - E~j)gti. (2.16) 

We need now an equation for the twisting tensor (2.6). From (2.6), (2.8), and (2.11), we have 

if). k 
__ - -  __ E ~ i ) ,  

ID*Cij,k d *C OrS *C OrS * C  Ov~ 1 t (2.17) 
= . . . .  e } i ) g , ,  * ' ~Dt dt *Cij,k Jr sj,k ~ x  i + ,s,k Ox j + ,j,S Ox k -- -~( Ei j  + 2 Cij Elk. 

The proof of the statement that the solutions of the evolution equations (2.8) and (2.9) have the general 
integral (2.7) reduces now to the standard calculation: applying the operator ~D/~Dt to both sides of (2.7) and 
using Eqs. (2.11), (2.12), (2.16), and (2.17), we obtain the required result. 

To write the equation of state for a material within the framework of the affine-metric model, one 
should consider the internal energy as a fuhction of the entropy and tensorial geometrical characteristics of 
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internal interactions 

�9 k V = U(s,r *C~, *r(kij, 'Rijq). (2.18) 

The last argument of the function of the internal energy (2.18) coincides with the coupling-curvature tensor 

�9 k * k 
.Rkj q 0 Fij 0 Fiq * k * k 

- 0zq 0z ,  + r q*rT - r j*r7.. 

The transfer equation for this tensor follows from (2.9): 

~Dt -~ Rijq + Ox i Rpjq "~ ~ j  Rip q "-~ ~ q  Rij p OxP Rijq - -  ~ = - -  ~ i l  ~ j q ,  

where the definition [3] of the covafiant derivative was used for the tensor E~.: 

OXq -- Xiq~lj -- t jq~ i l  + Xlq~ij" 

For a material that contains no defect structures in the initial state when the tensors *R~jq, *C~-, 
and *gijk vanish, the process of their occurrence during deformation is connected with energy dissipation. 
Therefore, when formulating the constitutive equations of the material, it is necessary to specify the internal 
energy (2.18) and the dissipative function. From the viewpoint of a qualitative analysis of these processes, 
the use of relation (1.14) between reversible and irreversible strains is of considerable significance. As a rule, 
the relation takes this form for small strains. For finite strains, there is no generally accepted relation. The 
more complicated nonlinear relations between the tensors Aij, Eij, and ~rij compared to (1.14) are discussed in 
the literature (see [9] and references therein). However, from the phenomenological viewpoint, relation (1.14) 
can also be applied to arbitrary finite strains, since it leads only to a change of the variables in the internal 
energy (2.18). However, this change does not affect the choice of the affine-metric characteristics *R~jq, *C~., 
and *I(ij k in (2.18), because their structure is determined by the dissipative processes in the material. 

We mentioned above that these processes are characterized by the dissipative function, which in the 
framework of the assumptions, of nonequilibrium thermodynamics is the bilinear form of thermodynamic force 
and flow: D(X) = X~Y ~ (D/> 0). A further generalization of this structure is connected with introduction of 
the following dissipative potential (I)(X) [10]: 

1 

r  D(AX) , OXi 
0 

Let the internal energy (2.18) and the dissipative potential r = r E6, eij, T) be specified. The equations 
of state of the material can be written in the form 

�9 k 0(I)  +p(  OU . 1  OU . k - 2 0 U  R;iq ) + 
�9 -~ .q  Rkpq 0 *R~pq nipq 0 .~kpjq Oeij' 

+ z0 ( + - (2.20 ) 
OEij ' 

OU OU _ 2 0_0_ OU OU . OU *F~q) - 0~ 

The standard analysis within the framework of nonequilibrium thermodynamics allows one to calculate the 
components jk  of the defect-flow vector: 

jk  OU 2 t OU 
= pEiJo.Kkij Ei jPo~ijk .  (2.21) 
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Inasmuch as the defects do not go outside the boundary S, the normal component of the defect-flow vector 
vanishes at the boundary: n k J  k = O. Since the sources Ei j  and E!j  are independent, hence and from (2.21) 
we have the boundary conditions in the form 

OU s OU I p ~ n k  = O, p-h-2~--n,,o = 0. (2.22) 
v .t~,ij k , a  

The components of the metric tensor and the coupling objects satisfy the second-order equations in the 
spatial variable; therefore, for 6 functions gij and 27 objects *F,k3 ., relations (2.22) provide the complete set of 
33 necessary boundary conditions. 

3. E las top las t i c  M o d e l  wi th  Discl inat ions .  To show the influence of the internal stresses associated 
with defect structures in a specimen on its behavior during plastic deformation, we consider an afflne-metric 
model which includes only disclinations. For this non-Euclidean model, the coefficients of affine coupling *Fij,k 
remain symmetric relative to the lower indices and the coupling matches the metrics. From (2.7), it follows 
that the affine coupling coincides with the metric coupling Fij,k, the latter being calculated by the relations 
(1.9) and (2.5), in which the metrics are determined by the solution of Eq. (2.8). The internal energy has the 
form U = U(s,  r Rli jq),  where the elastic strain tensor is determined in terms of metrics (1.3) and (2.8), 
while the transfer equation (2.19) for the covariant components of the Riemann tensor is written in the form 

d Ov p OvP _ Ov p _ Ov p _ 
DRlijq~)t = -~ Rlijq -I- ~x l  Rpijq n u ~x i  Rlpjq q- ~x j  l-llipq q- ~xqt'llijp 

= vq ( v , E . -  v:,.)  + v; (v: ,q-  viE.,) + 2E,,,:'R,i,,. 
We consider a theoretical variant by setting D = D ( T ,  Ei i ) .  In this case, we have 

( ov ) 
D = Eni  P ~ i  Hn i  ' 

(3.1) 

02 " ,~ 0._0._,{ jrdpqF j . _ 2pJlkpq(F~FJkq FlqFkp)] ' Hn i  = [ - 4 0x--~OxqPJt"'q + " Ozq "~ tp + JCP~F~ - J"'pJrTp ) - " j 

jlijq = OU 
ORtijq" 

We rewrite expression (3.1) in the form adopted in the theory of plasticity. To this end, we express the first 
term in brackets through the stress tensor 

�9 OU 
a~ = (6ik -- 2 S i k ) P ~  + 4Rilpqp oRlj%q 

and use the formula 
1 0A 

A Oaik akj = 6j, A = det Ila01l, aij  = ~ij -- 2eij. 

Then, 

_ 0 1 n A (  4RitpqpoORUpq ) s i D = E n j - W ' - - -  ~{ -- ~ a ikH kj =-- v i (or s - T's). 
Oani 

i 0 It is usually assumed that plastic strains do not change the volume of material. We require that v i = 
and express the rate of energy dissipation in the form 

D i k k = ( a k  r f ) - -  16kta 1 ~./). (3.2) 

Let D be the function of the first degree of homogeneity in v/k, i.e., D(Av/k) = lAID(v/k). We use the Mises yield 
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J n m criterion for the material. Then, D = r0 J i and s j = r0(v i / ~ ) ,  which is equivalent to the relations 

S=si  - 

As a result, the rate of plastic strain can be written in the form 

For elastic strains, we obtain 

Eij = A ff~fsik(Skj -- 2ekj). 

~Deij f eij if s ik Ski < .f0 2, 
(3.3) 

fl)t = ~ e i j -  Eq  if s ~ s i k = r  2. 

In the case of small elastic strains and the absence of defects, we have r] = 0 in (3.2). This implies the 
well-known equations of an ideal rigid-plastic medium eij = Eij. The allowance for the contribution from 
the defects to the dissipation results in a translational transfer of the yield surface in the stress space and 
hardening of the material. 

The above generalization of the internal geometrical structure of the material with a transition from the 
Euclidean to Riemannian geometry  leads to a geometrically closed class of models of elastoplastic materials. 
Within the framework of the model  considered, any strains do not alter the qualitative character of interaction 
between the particles in the material.  

4. Discuss ion .  The extension of the classical theory of elasticity to the broad class of elastoplastic 
materials the internal interactions in which are of affine-metric structure allows one to construct geometrically 
closed complete thermomechanical  models of these materials. The use of the formalism of nonequilibrium 
thermodynamics makes it possible to model the interaction between the defects and to relate these defects to 
the macroscopic properties of the  material during deformation. In addition, concretization of the dissipative 
characteristics of materials must  be based on experimental data. 

We make a few remarks concerning the physical interpretation of the quantities used in the theory. We 
note primarily that the equilibrium equations of a specimen with defects are a generalization of the well-known 
physical equilibrium models of elastic continuum with dislocations (see, e.g., [11]). The presence of dislocations 
leads to a replacement of all the  affine-metric characteristics on the right-hand side of (1.12) or (2.20) by a 
singularity of a certain form. As a result, elastic strains occur, which correspond to a defect-induced plastic 
strain and leads to the nonzero internal energy of this specimen. 

The use of the affine-metric characteristics to describe the defects was proposed by Kondo and Bilby 
[12, 13]. The affine-metric theories used to describe disordered systems were classified by Grachev et al. [6, 
7]. However, their correspondence to the generally accepted physical models requires a special discussion. 
In particular, the model of an elastoplastic body considered in Sec. 3 contains no dislocations according to 
this classification. Nevertheless, a theory with U = U(s, eq,  Rtijq) can be constructed that takes into account 
dislocations determined in terms of the Burgers vector b. In Euler variables, the components of this vector 
are calculated via the transformation matrix p7 = p~(x, t) which relates the coordinates of the points of the 
medium dx k after deformation to the initial coordinates d~ a for an infinitesimal element of the medium [14]: 

p~dx k. The components of the Burgers vector are b ~ = - J p ~ d x  k for any closed contour [2, p. 184]. d~ a 

The dislocation-density tensor Bia  is determined by the relation 

1 (OP~ Op~ ~ (4.1) 

where e ikj is the Levi-Civita symbol, and the objects C~j characterize the deviation of the mapping p~ from 
diffeomorphism. We assume tha t  the metric elastic-strain tensor gii has the form gij -- PTPT" Actually, this 
relation determines the choice of a possible parametrization, for which the intrinsic metric tensor does not 
coincide with the complete strain tensor, i.e., the Almansi tensor Aq, but possesses an algebraic structure 
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that corresponds to the classic theory of elasticity. Calculating Fii,k for the above model with disclinations, 
we obtain 

From this relation and (4.1), it is seen that this model contains dislocations. It is clear that the separation of 
them in affine-metric objects is determined by a relation between the experimentally observed discontinuity 
of the diffeomorphic structure of the strain field (the functions p~) and the intrinsic metric structure (the 
tensor gij). Obviously, eij and Rtijq are expressed in terms of the generalized distortions as well. The transfer 
equations for them can be written in the form 

dP7 ~ Ov t 
dt + Pl -~x i = I~" 

Moreover, Eij are connected with I~ by the relations E i j =  (p717 + p~I~)/2. We set I~ = 7aZp~; then 

Eij = 3' Pi Pi and 3'a~ can be expressed in stresses and distortions. Thus, to describe the evolution of the 
generalized distortion, in place of Eqs. (3.3) for elastic strains we have 

@7  0,t f 0 for s,ksk <r 2, 
+Pt  = 

dt 7aZpi # for k i = sis k 7"02 . 

From the physical viewpoint, the affine-metric objects are the intrinsic variables. The tensors r and 
rij cannot be measured directly. Only the sum of them (or any other representation of Aij in terms of ~ij 
and 71"/j) can be measured directly. Nevertheless, the tensor Aft can always be determined if the velocity 
field is known, since v i = dui/dt (u i is the displacement field). In addition, the tensor Aij is expressed in 
displacements in a standard way. The above representation for gij in terms of the generalized distortion P7 
is not necessary for the model considered. However, this representation is frequently used in the literature [2, 
11, 14, 15] to describe dislocations. 

The physical interpretation of the model presented in this paper gives an insight into the nature of 
plastic deformation at the scale levels that are characteristic of various types of defect structure. 

The general affine-metric model describes phenomenologicaily the interaction between the defects and 
the perturbations induced by these defects in an elastic strain field. At the same time, it allows one to interpret 
the plastic behavior of the material on the basis of the structure of deformation fields with various levels of 
measurement resolution. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No 96-01- 
000540). 
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